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It  is shown why the requirement of reality coupled with that of non-negativity and certain symmetry 
of the electron-density function constitutes a weak criterion in space groups lacking translational 
symmetry elements, at least in so far as the requirements mentioned are exploited by any Harker- 
Kasper inequalities. In space groups with translational symmetry operations the situation is fun- 
damentaUy different. 

Notat ion 

gF(h)= ~,(h).F(h), where y(h) is a real or complex 
contingently vanishing coefficient which may 
imply e.g. 'sharpening' of Ooorrect, 'unitariza- 
tion' or normalization of F(h), partial summation 
and/or generalization of phase angle (within 
certain limits). 

c~(h) is an arbitrary (correct or incorrect) phase angle 
of the complex structure factor gF(h) = 
]gF(h)l exp [is(h)]. 

1 
g0(r) g0(r) = y~ 2 g F ( h ) . e x p  [ - 2 ~ i h .  r]. 

r h  

is the complex conjugate of Z. 

integration over complete period (cell). indicates 

j ,  k, l, m, p, q, #, v are positive integers. 

n is the symmetry number. 

Ci is the ith symmetry operator (see MacGillavry 
(1950)). The letter i is also used for ~/-1 as no 
mistake can be caused thereby. 

~t, t, ¢i. r + t , - -C, ,  r where ~, is the matrix part and 
t, the translational part of the ith symmetry 
operation. 

Z± is the projection of Z on to the real axis i.e. the 
real part of Z. 

- is a congruence sign, the modulus always being 
2g. 

f is any complex function of r. 

N is determinantal order. 

Introduction 

Starting with the generalized function (generalized 
phase angles) 

g0(r, a ) =  v ~ g F ( h ) . e x p  [ - 2 g i h . r ]  , (1) 

A C 1 3  - -  2 9  

the fundamental problem of structure determination 
is to find and make use of additional information 
rendering g0 physically sensible. We shall first of all 
suppose that  0 and indeed any g0 is real i.e. that, for 
every generalization, 

gF(h) =g~5(- h) .  (2) 

We attempt to appraise the criterion of non-negativity 
and symmetry, especially in so far as these properties 
are exploited in the derivation of the Harker-Kasper 
inequalities (Harker & Kasper (1948), MacGfllawy 
(1950)). 

Cochran (1952) discusses the integral (here given in 
a modified form) 

g08(r)dv(r) = --~ .~, gF(h).gF(h').gF(h") (3) 
h + h ' + h ' "  = o 

and states that  in case of centrosymmetry the a's 
found by means of the Harker-Kasper inequalities or 
by the Sayre (1952) equalities are those making (3) 
maximum positive. (For exposition see Cochran & 
Woolfson (1955) and Cochran (1955).) 

We shall use a more extensive treatment and prove 
that  

(i) the Harker-Kasper inequalities, irrespective of 
symmetry, fix lower, and only lower, limits to the 
real parts of the terms 

gF(h).gF(h') .gF(h")= I gF(h).gF(h'),  gF(h")l ] 
x exp {i[a(h) + a(h') + a(h")]} ,  

where h + h'  + h"  = 0 ,  
(4) 

and thereby a lower limit.--if, for an infinite gF series, 
it puts any finite limit at al l-- to the sum (3), 

(ii) for translation-free (possibly centered) space 
groups the absolute maximum in c~ space of sum (3) 
is generally not associated with the correct phases. 

There is a reservation to (i) which we shall return 
to in the discussion. The absolute maximum men- 
tioned in (ii) is easily visualized and gives a picture 
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of the amount  of freedom of movement  in a space 
left by the inequalities. 

D e v e l o p m e n t  

Let us start  with a general linear combination of 
gF(h(O)'s (compare MacGillavry (1950)): 

m m 

.~  ~'(h(O)gF(h (O) = .~  ),'(h(~)) 
v~--I v----1 

x - ~(r).222 exp [2~ih (0. C~. r ] .dv(r )  
i = 0  

1 ~  m n--1 

n g~(r) ~ '  .~Y y'(h(~)).exp [2~ih(o.C~.r].dv(r) (5) 
v----1 i = 0  

where (primed) ~/(h(O) is a quite arbitrary (non- 
vanishing), complex coefficient of 

gF(h(O) = ~,(h(~)). F(h(0) .  

gF(h(0) corresponds to a g0(r) tha t  is non-negative 
(this restriction fo r - -unp r imed- -y (h  (0) remains until 
otherwise specified). We shall go as far as to s tudy 
(5) by means of Schwarz's inequality. 

Applying a straightforward generalization of MacGil- 
la r ry ' s  t rea tment  one obtains the following condition: 

[ ,_~ ~,' (h(~)). gF (h(~)) ~ 

 F(0) { 
< ~ I~'(h(°)l~.gF(h(O. w - h  (~)) 

Tb k----0 v = l  

× exp [2~ih(O.t~] 
m m~-I 

v = 2  /~----1 

exp [2~ih (0. t~]}±/. (6) X 

(6) may  lead to the condition that  the real part  of 
a term 

gF(h(0. ~ -  h(O). exp [2~ih(O. t~] (7) 

should not be less than a certain value (which may 
depend upon the ~ values assigned to other terms 
in (6)). This can be expressed in the way tha t  the 
argument of expression (7) i.e. 

arg (gF(h (0 . ~ -  h (~)) } + arg (exp [2~ih(O. t~] } 
= ~(h(~). ~ - h(~)) + ~(h (~)) _ ~(h(~). ~ )  

c¢(h(O. ~ -  h(')) + c~(h(')) + c~( - h (0 . ~ ) ,  (8) 

should have (or be congruent to) a value in a certain 
interval ( - f l ' ,  if) where 0 < fl' _< 7~. (Notice tha t  

(h(O. ~ -  h(')) + (h(0) + ( - h(0. ~ )  = 0.) 

This is in accord with the general s tatement  (i) 
about (4). 

(6) may  further lead to the requirement tha t  a term 

(~'(h(~)) • ~' (h (~)) .gF(h 0') • q~k-- h(~)) • exp [27dh (~) . t~]}± (9) 

should exceed a certain value (which may  again 
depend on the values assigned to other terms in (6)). 
(6) is valid for any choice of T"s. In  so far as the left 
member of (6) is considered, the most rigorous ex- 
pression obtains for all ~'(h0')).gF(h(0)'s having the 
same argument,  say, zero. With such ~,"s the result is, 
tha t  the argument  of (9) (not projected) i.e. 

- a ( h  (~)) + c~ (h(~)) + ~ (h(~).  ? k  - -  h(a))  

+ ~ (h (~)) - c~ (h (~) . ?~) 
-- a(h("))+ a(h(0. ~ - h C , ) ) +  ~ ( - h ( ' ) .  ?~) ,  (10) 

should have (or be congruent to) a value in a certain 
interval (-15",  15") about the real axis. (Notice tha t  
the reciprocal vectors in (10) may be any three vectors 
adding up to zero.) This is again in agreement with 
the general s tatement  (i). 

Consequently (6) always leads to results in accord- 
ance with s tatement  (i). (6), however, does not cover 
all Harker -Kasper  inequalities derivable from (5). 
Alternative forms may be found if it is possible to 
factorize 

m n--1 

Z ~ 7 '(h (')) .exp [2~ ih(o .Ci . r ] .  (11) 
v = l  i=O 

The case m =  1 was treated by MacGillavry (1950) 
with the contingently applicable result 

1 p--1 
laF(h)12 _< - 2 gF(h. ~ j - h ) . e x p  [2~ih.t~] 

~ = 0  

q--1 

x 2 gF(h. ~ . - h ) . e x p  [2~ih.t~.], (12) 
k = 0  

where both sums are positive. (For the meaning of 
the suffixed and primed operators, see the original 
paper.) 

The conclusion is again tha t  the argument  of some 
term, say the j th ,  i.e. 

t t c~(h. ~ i -  h) + c~(h) + c~(- h .  ~ j ) ,  (13) 

should have (or be congruent to) a value in a certain 
interval ( -  15'", t5'"). (Notice tha t  (h. 9 ~ -  h) + (h) + 
( - h . ~ / ) = O . )  This is still in concordance with our 
contention (i). 

In  the general case (m>_2) there is always the fac- 
torization type 

m n--1 

Z ?'(h(V). exp [2gih (~) . Ci. r] = exp [2~ih (~) . Cq.  r] 
v = l  i = 0  

m n--1 

× 2 2 ~'(h(~)). exp [2~i(h (0. C~-  h (~)" Cq). r] (14) 
v----1 i = 0  

exemplified by Harker  & Kasper (1948). Use of the 
resolution (14) brings one back to (6). There are, 
however, sometimes other resolutions, e.g. one leading 
to the important  relation 
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I~F(h) + ~F(h')l" 

< { a F ( O ) + _ a F ( h + h ' ) } { g F ( O ) + _ a F ( h - h ' ) } ,  (15) 

valid by  cent rosymmetry .  We a t t e mp t  a general 
resolution of 

m n--1 
2: 2: ~'(h(O). exp [2~ih (~). C~. r] 

v = l  i=0  

m n--1 
= .,~ .~Y ~,'(h(')). exp [2~ih (~) . t~]. exp [2~ih (~) . q)~. r] 

~=~ ~=0 (16) 

under  the form of 

p-1  
! , v t • v ! 

2:  7~" exp [2mh~. tk]. exp [2mh~. ~k. r] 
k=0 

q--1 
/ t  . # # / t  x 2:  Yz. exp [2:~hz • tz ]. exp [2~ih~'. 9z. r] 

Z=0 
p---i q--i 

I t  • t ! z /  i t  

= 2 : 2 7  y~. Yz .exp [2m(h~. tk+hz  .tz)] 
k=O /=0  

# 

x exp [2~i(h; .  ~ ;+h~ ' .  ~ z ) . r ] ,  (17) 

where y, h, 9, and t (in (17)) are submi t ted  to no 
advance condition (indexing of h and priming of 9 
has not  the same implication as in MacGillavry (1950) : 
the  9 's  m a y  be any  mat r ix  operators).  We identify 
(16) with (17), supposing 

p . q = m . n  . (18) 

For  each k and 1 there must  be a v and / - - s a y  vg,z 
and ig,z--such tha t  

t # t t  

h(~k, ~) . epic, z= h~. ~k+ hz. ~z . (19) 

We fur ther  identify 

! t t  ~"(h(~k'z)) = Y~. Yz , (20) 
and claim 

! t ~ H 

27~. h(~k, z) . tig, z -- 2xt(h~. t~+ h z . t z ) . 

When (16) is identical with (17), (5) gives 

(21) 

1 
],=~1 y'(h(0)gF(h (o) ~_< ~--~ ~ ~o(r) 

x ) , ; .exp [ 2 ~ i h ; . t ; ] . e x p  [2~ih; .~0; . r ]  dr(r)  
k=O 

x ~ ~ ( r )  

i x y~'.exp [2~ih~'.t~'].exp [2~ih~'.q)~'.r] d r ( r ) .  
l (22) 

Par t ly  developing as above ((5) to (6)) gives 

m ~ I 
,,__Z17'(h(')).gF(h (0) _< 

n--- ~ 

{k~__~ ~ p--1 p--2 t 2 ~ t  x I~,kl .g_~(O)+2Z 2: {~,;.~,k 
k = l  k'=O 

k >  k' 

. . . . . . . .  )]} } × gF(hk. ~ k -  hk" ~k')" exp [27~(h k. tk-- hk,. tk, . {q~ q-1 q-2 
x I ~ ' p . g F ( 0 ) + 2 Z  2: (~'~z'; 

l / = 1  Z'=0 
l > l "  

t /  z ,  # # # # 

% 

× gF(hz. ~z - hr .  ~',). exp [2~i(h~'. tz - hr .  tv)]}z • 
) 

(23) 

(We have no reason here to invest igate  under  what  
premises the development  can be carried further.)  

We again make the left member  as large as possible, 
sett ing 

arg {~/(h(°)} = - a (h  (~)) ( + constant)  . (24) 

Then one can show, using (19), (20), and (21), t h a t  
the a rgument  of the k, k ' th  te rm (not projected) of the 
first parenthesis  of (23) is congruent to 

a(h(~k'z). ~ik, z -  h(~k"z)- ~ik',z) 

+ a( -- h (~k,Z) . ~ik, z) + a(h(~k''z) • ~ik',z), (25) 

and correspondingly for the second parenthesis  
(1, l ' th  term):  

a (h ('k, z). q~ik, z - h(~l~' ()" ~ik, z') 

+ a( - h(~k'0" ~ik, z) + a( h(~k'()" ~ik,() • (26) 

Since both parentheses of (23) are positive, s t a tement  
(i) follows. As (23) (with the special case (6)) covers 
all Ha rke r -Kaspe r  inequalities, this result  confirms 
s ta tement  (i). 

We now tu rn  to (ii). 
Let  us set out from a n y  a ' s  satisfying all H a r k e r -  

Kasper  relations (e.g. correct a 's)  and consider 

[Za[ = - - [ ~ ( h ) + a ( h ' ) + a ( h " ) ]  , / 
where / (27) 

h w h ' + h " = O .  

One can always assume tha t  [Z'o¢ l _< ~. Any  a " s  giving 

I-ro,'l _< IXo, I (28) 

for every h t r iplet  give a g~ function 'v i r tual ly  non- 
negat ive '  in the meaning t h a t  the  H a r k e r - K a s p e r  
inequalities are satisfied and such t h a t  (3) assumes a 
value equal to or larger than  the correct one. 

For  all space groups which do not  imply  t ransla t ional  
operations (except possibly centering translat ions) (28) 
has the t r ivial  solution a ' - - 0  (or an equivalent  one 
depending on choice of origin). This corresponds to a 
cent rosymmetr ie  g~ func t ion- -which  we will designate 
g ~ t r ~ e - - c h a r a c t e r i z e d  by  an extreme 'electron'  ac- 
cumulat ion in a point  with the lowest number  of 
positions. In  all cases complicated enough, and for 

29* 
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gF series complete enough, to call for special attention, 
o~¢~r~¢ is highly dissimilar to g~¢o~r¢o~- As Harker-  
Kasper inequalities cannot discriminate between these 
two, the result gained by the inequalities must 
necessarily be very meager. 

I t  is conceivable tha t  the Harker-Kasper  in- 
equalities and, for sufficiently limited series, the 
maximization of (3), might lead to several alternative 
sets of o~'s of which one is (equivalent to) the trivial 
set and one is correct (centrosymmetry). In this case 
some extra condition must be used for discrimination. 

If there is a translational part  of some symmetry 
operator an accumulation of 'electrons' as just dis- 
cussed is impossible: there are, for any r origin, 
~-relations repugnant to the trivial solution. I t  can 
be proved moreover, tha t  at  least for complete gF 
series no other solutions exist for which all IXa'l -- 0: 
they would become identical with the trivial case after 
appropriate origin translation. This means that  at least 
an extreme 'electron' accumulation is impossible. 
Centrosymmetric examples prove that  neither is there 
necessarily any general point (plus equivalent posi- 
tions) such that ,  in the case of virtual non-negativity, 
the real parts of all Fourier terms are non-negative 
in the point. Whether, for a complicated structure, 
the Harker-Kasper  inequalities, or the maximization 
of (3), might give a decisive clue to the structure 
sought is thus still an open question for space groups 
with translations. At any rate the positions in a space 
of the maximum of the sum (3) (compare (4)) are no 
longer independent of the magnitude of the co- 
efficients ]oF(h).gF(h').oF(h")]. 

General considerations and discussion 
One may ask whether other non-negativity criteria 
than those we have used can eliminate gQ¢~tr~m~ in 
case of translation-free space groups, i.e. whether 
'virtual non-negativity'  is true non-negativity. I t  can 
be shown by examples tha t  g~e~r~¢ is not neces- 
sarily non-negative. The following arguments make it 
probable, however, tha t  there can exist no reliable 
inequality capable of excluding the trivial solution. 

Starting with the generalized Schwarz's inequality 

. . . . .  

. . . . .  

. . ° ° . ° ° . . . . . . . . . . . ° ° ° . , .  ° . . ° , , . . . . . . .  

(29) 

(see e.g. Goedkoop (1950)) one gets particularly for 

f~ = g9½. exp [2gih (~). r] 
(30) 

h (°) = 0 

and non-negative g~, the Kar le -Hauptman (1950) in- 
equalities (compare Goedkoop (1950), § 2), which are 
necessary and sufficient conditions for non-negativity. 

We have specialized (29) by setting N = 2 (Schwarz's 
inequality) but generalized f l  to 

m n--1 / 
f:  =g~½ 27 ~" ?,'(h(~)). exp [2~ih (~). Ci. r] 

~=1 i=0 (31) 

(fo=ge ½) 

thus arriving at  (6). The resulting inequalities were 
utilized by assigning those arguments to ?,'(h (~)) tha t  
make the left member ('the smaller member') as large 
as possible. An alternative strategy, using Schwarz's 
inequality, is to assign values to the coefficients in 
such a way tha t  the larger member becomes as small 
as possible, or to examine both members. Our function 
fl, (31), is, however, not suited to such a procedure 
(for n > l ) :  the ~"s are independent of i (compare 
e.g. (6)). In case one still uses inequality (6) or (23) 
according to the more elaborate strategy, the result 
might possibly be at variance with our statement (i) 
in the Introduction. This is the reason for the reserva- 
tion made there. 

If one sets 

m n--1 } 
fi  =o~½ 2; 2;  y~(h(v)), exp [2~rih (~). C~. r] 

~=: i=0 (32) 

fo =g~½ 

the result of applying Schwarz's inequality is 

gF(0), g~ 2; 27 y~(h(~)).exp [2~ih (~).C~.r] dv(r) 
v = l i = 0  

m n--1 2 
>_ g~27 27 7~(h (~)) exp [2:tih(~).C~.r]dv(r) (33) 

v=l i=0 

or, developing according to MacGillavry 

n--1 m m , 7) ~t ) oF(0). 27 2; 27 (27 r~(h( ))rj(h(. ))k 
/¢=0 v= l  /~=I 

x gF(h (~) . ~ e -  h&)). exp [2~ih (~). tk] 

i ) : 
where the sum 

(2y~(h(')). ~:(h(")))~ 

is to be taken over all i (or j ,  n pairs) defining a certain 

The complete collection of inequalities of type (33) 
(or (34)) together constitutes a necessary and sufficient 
condition for non-negativity: (33) is a stronger form of 
Karle & Hauptman 's  fundamental inequality (their 
expression (3), put  > 0). 

A general discussion of the use of (34) is very in- 
tricate. (34) does not necessarily lead to (i) because 
g~extreme might be negative. However, it is not very  
difficult to prove tha t  if strong inequalities are to be 
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developed from (34), y'  should be made independent 
of i (j).* The resulting inequality is then identical 
with our starting point (6). 

There is reason to believe that  any non-negativity 
criterion able to exclude g~extreme in case of translation- 
free space groups must be weak: g~)extreme probably 
cannot contain deep negative minima. 

gQextreme has a very high positive maximum in the 
origin. A deep negative minimum in _+ rl  would make 
the corresponding, generalized Patterson function 
(which in this case belongs to the same space group as 
gQextreme) negative round about + rl  provided small 
contributions do not happen to cooperate so that  the 
negativity is cancelled. The generalized Patterson 
function derived from (1) and (2) is, however, known 
to be independent of a, i.e. to be non-negative if 
g ~)correct is. 

I t  therefore seems that  there can exist at least no 
simple and reliable non-negativity criterion capable of 
excluding gQe~treme" (There might anyhow exist some 
gQ(c¢) rather similar to gOextrem e and non-negative.) 

The fact that  

~(h)+ ~(h ' )+  ~(h") :-- 0 / (35) 
for Zh  = 0 ! 

is statistically true (Cochran (1955)) in a case that  is 
rather the opposite of the extreme case is compatible 
with our result only if the average frequency curve 
flattens out with increasing number of atoms in the 
cell. This is so, which means that  the statistical rela- 
tion becomes less and less valuable the more com- 
plicated the structure is (compare Cochran (1955), 
equation (7) and his Discussion). 

As far as is known to the author no complicated 
structure with a translation-free space group has been 
solved by using Harker-Kasper inequalities or by 

* A series of inequalities not covered by Harker & Kasper 
(1948) but covered by (34) (m--- 1, the smaller member vanish- 
ing) is given in Goedkoop (1950) (inequality (4-20) for i=k 1). 
The coefficients Z are functions of r (i+ 1, in our notation). 

maximization of expression (3). Our result shows that  
this must be so. On the other hand, practical examples 
prove that  for structures with translational symmetry 
elements, t tarker-Kasper inequalities (see e.g. Kasper, 
Lucht & Harker (1950)), or maximization of expres- 
sion (3), (see e.g. Cochran & Douglas (1955)) can be 
of decisive value even in rather complicated cases. 

C o n c l u s i o n  

The non-negativity condition or the maximization of 
expression (3) (unaided by other criteria) is insufficient 
for complicated structures (several atoms per cell of 
the heaviest kind) in space groups lacking glide planes 
and screw axes. This conclusion has led the author to 
formulate and develop a more general condition for ~. 
The result will be published. 

This paper was written in context with an in- 
vestigation of the structures of ferric chloride hydrates, 
and I herewith express my gratitude for a grant from 
the Nobel Committee of Chemistry. The work has 
been done in the inspiring atmosphere of the Institute 
of Prof. G. Hi~gg and I feel much indebted to him for 
having read the rough copy. 
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